
NAND Flash
Overview and FreeBSD

http://people.freebsd.org/~imp/bsdcan2014.pdf

http://people.freebsd.org/
http://people.freebsd.org/

Talk Overview
NAND Flash Fundamentals

Types of NAND
Geometry
Protocols
Storage Devices built on NAND

FreeBSD NAND
Overview of architecture
Usage Walkthrough
Limitations

NAND Storage Block Diagram

Block Requests
Read,Write,Trim
LBAs

Flash
Translation
Layer (FTL)
NAND Addr Multibank

NAND

NAND Storage Block Diagram

Block Requests
Read,Write,Trim
LBAs

FreeBSD
Block Layer

Flash
Translation
Layer (FTL)
NAND Addr Multibank

NAND

SSDCAM -> Controller -> SATA

Flash Translation Layer

Translate LBA (logical) to NAND Addr(physical)
Manages free space
Manages wear leveling / health
Most IP of flash storage products here

Hybrid designs (HSSD)
Flash data center (caching and distributed)

NAND Basics

NAND is a collection of cells.
NAND cell stores data (1-3 bits)
Groups of cells are a page (min read/write)
Groups of pages are a block (min erase)
Groups of blocks are a plane
Groups of planes are a chip
Groups of chips are a package

NAND Hierarchy

Package
Chip

Plane
Block

page

NAND Cells

Determines Speed, Reliability and Endurance
Stores 1, 2 or 3 bits per cell
SLC - 1 bit
MLC or MLC-2 - 2 bits
TLC or MLC-3 - 3 bits
Each bit maps to a different NAND page

NAND Cells

Source: 3 Bits/Cell NAND: micron.com

(TLC for this talk)

NAND Cell comparison

SLC MLC TLC

Read Speed Fast
(25us)

Medium
(50us)

Slow
(90us)

Endurance Excellent
(100k)

OK
(3k)

Poor
(500)

Density Poor OK Good

Program Fast
(500us)

OK
(1-2ms)

Slow
(2-4ms)

NAND Trends (getting smaller)

Source: Guiding Light at English Wikipedia
http://en.wikipedia.org/wiki/File:NAND_scaling_timeline.png

NAND Trends (and crappier)

Source: A new era in embedded flash memory (Anobit)

http://www.slideshare.net/Anobit/a-new-era-in-embedded-flash-memory-anobit-presentation-fms-2011

NAND Error Sources

Retention (left shift)
Cells lose charge, reducing potential

Read Disturb (right shift)
Inhibits on reads adds charge to other pages

Program/Erase Cycle (right shift)
Traps charges
Damages insulation microscopically

NAND Pages

Minimum read/write unit
Extra bytes for ECC to correct errors
Some NAND can do sub-page reads
Some SLC can do partial pages
MLC/TLC must be programmed in order
Must be erased before programming
1k to 16k (newer generations are larger)

NAND Blocks

Minimum Erase Unit (all pages erased)
64-256 pages per block (more newer)
Basic unit of device/file system log
Much larger than system (512/4k) blocks
Erase time long (2-5ms), especially at EOL

NAND Planes

Multiple planes may allow parallelism
1-4 planes typical
Often consume one or two address bits

NAND Chips and Packages

1-4 planes per chip
1-16 chips per package (usually on
independent CEs, but sometimes shared)
Interfaces to CPU at this level
More CEs usually means more performance

NAND Interface
Typical Read operation

Source: Micron TN-29-15 (micron.com)

tR ~ 30-50 µs
tCEA ~ 45 ns
tREA ~ 35 ns

Simple NAND Integration

Source: Micron TN-29-19 (micron.com)

Complex NAND Integration

Source: Micron TN-29-19 (micron.com)

Log Structure

New data appended to end (logical tags)
Compused of many segments in order
Translation between logical to physical needed
Need to GC older, emptier segments
Extra writes generated by system

Log structure terms

WA - Write Ampliphication: Factor by which
physical writes are bigger than logical writes
GC - Garbage Collection: Reclaiming blocks
that are mostly empty by copying data forward

Log Structure Example

6 extents (B1 - B6)
Each extent holds 10 blocks
Log capacity 40 LBAs (0-39)

Implies 2 extents are spare
Metadata omitted for simpicty
Simple writing example to illustrate WA and GC

Log Structure Example

B1 B3B2 B4 B6B5

Erased

In Use

Initial state: Empty Log

Stale

Stale LBAs

head

Log Structure Example
Erased

In Use

Write LBAs 0-19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Stale

Stale LBAs

B1 B3B2 B4 B6B5head

Log Structure Example
Erased

In Use

Write LBAs 5-9

0
1
2
3
4

10
11
12
13
14
15
16
17
18
19

5
6
7
8
9

Stale

5
6
7
8
9

Stale LBAs

B1 B3B2 B4 B6B5head

Log Structure Example
Erased

In Use

Write LBAs 18-39

0
1
2
3
4

10
11
12
13
14
15
16
17

5
6
7
8
9
18
19
20
21
22

Stale

23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39 Stale LBAs

5
6
7
8
9

B1 B3B2 B4 B6B5head

Log Structure Example
Erased

In Use

Want to write LBA 12-29

0
1
2
3
4

10
11
12
13
14
15
16
17

5
6
7
8
9
18
19
20
21
22

Stale

23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39 Stale LBAs

5
6
7
8
9

18
19

B1 B3B2 B4 B6B5head

Log Structure Example
Erased

In Use

Want to write LBA 12-29

NOT ENOUGH SPACE

0
1
2
3
4

10
11
12
13
14
15
16
17

5
6
7
8
9
18
19
20
21
22

Stale

23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39 Stale LBAs

5
6
7
8
9

18
19

B1 B3B2 B4 B6B5head

Log Structure Example
Erased

In Use

Want to write LBA 12-29

GC Forward 0-4 and 10-11

0
1
2
3
4

10
11
12
13
14
15
16
17

5
6
7
8
9
18
19
20
21
22

Stale

23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39 Stale LBAs

5
6
7
8
9 18

19

B1 B3B2 B4 B6B5head

Log Structure Example
Erased

In Use

Want to write LBA 12-29

GC Forward 0-4 and 10-11,
Invalidate (TRIM) 12-29
Head moves to B3

5
6
7
8
9

Stale

30
31
32

33
34
35
36
37
38
39
0
1
2

3
4
10
11

Stale LBAs

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

18
19
20
21
22

23
24
25
26
27
28
29 Moved LBAs

B1 B3B2 B4 B6B5
head

Log Structure Example
Erased

In Use

Want to write LBA 12-29

Erase B1 and B2, do write

Note: Log now starts at B3
Had to write 7 extra blocks
(WA = 72 / 65 = 1.1)

5
6
7
8
9 Stale

30
31
32

33
34
35
36
37
38
39
0
1
2

3
4
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29

Stale LBAs
18
19
20
21
22

Moved LBAs

23
24
25
26
27
28
29

B1 B3B2 B4 B6B5
head

High WA Effects

Higher latency (writes take a long time and
block reads)
Reduced endurance (extra writes cause extra
wear)
Lower bandwidth (writes block other
operations)
---> Poor Performance

Avoiding High WA

Large writes (more efficient FTL)
Enable TRIMs (less GC needed)
Avoid “checker boarding”
Use a log-based FS with segments that match
storage devices segments

NAND Management

Wear Leveling
Error correction
Error avoidance
Error recovery
Bad block management
Endurance management

NAND Management and GC

GC triggered to recover space
GC also triggered when NAND is bad

too high ECC correction rate
too many reads
other events (chip failure, charge pump, etc)

Types of NAND Storage Devices

Managed Devices
Presents logical view to host
Does all translation and NAND management

Unmanaged Devices
Presents physical view to host
Host does some or all NAND management

Managed Devices

SSDs
Thumb Drives
SD Cards
NVMe Cards
Some raw flash parts

Unmanaged Devices

Raw NAND
Some PCIe cards
Many Hybrid NAND parts

Host does logical to physical translation
NAND does ECC offload

FreeBSD Support

Most managed devices
CAM for disks (SSDs, Thumb Drives)
Custom drivers for RAID cards
mmcsd stack (SD Cards)

FreeBSD Features

TRIM support
Large block size (UFS)
Log structure (ZFS)
GEOM direct dispatch

Typically devices very good at emulating fast
disks

FreeBSD SSD Optimal Performance

Align partitions to large boundary (64k, 128k)
Ensure stripes are similar sized for RAID
Ask drive vendor for optimal block sizes
Use vendor block size for UFS/ZFS
Test variety of settings with specific workload

SSD Danger Zones

Understand read and writes interact
Even relatively small writes can affect reads

Recall relatively long tPROG
Lots of reads can affect write performance

Recall read disturb triggers GC
Misaligned (in LBA space) or odd sizes tax FTL

Unmanaged NAND on FreeBSD

nand(4) driver
nandfs(4) driver
SoC specific mid-layer
WITH_NAND=y

Preliminary and Experimental

Questions

Warner Losh
imp@freebsd.org
wlosh@netflix.com
http://people.freebsd.org/~imp/bsdcan2014.pdf

mailto:imp@freebsd.org
mailto:imp@freebsd.org
mailto:wlosh@netflix.com
mailto:wlosh@netflix.com

